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Abstract

The availability of individual-level health data presents opportunities for monitoring the

distribution and spread of emergent, acute, and chronic conditions, as well as challenges

with respect to maintaining the anonymity of persons with health conditions. Particularly

when such data are mapped as point locations, concerns arise regarding the ease with which

individual identities may be determined by linking geographic coordinates to digital street

networks, then determining residential addresses and, finally, names of occupants at specific

addresses. The utility of such datasets must therefore be balanced against the requirements

of protecting the confidentiality of individuals whose identities might be revealed through the

availability of precise and accurate locational data. Recent literature has pointed towards

geographic masking as a means for striking an appropriate balance between data utility and

confidentiality. However, questions remain as to whether certain characteristics of the mask

(mask metadata) should be disclosed to data users and whether two or more distinct masked

versions of the data can be released without breaching confidentiality. In this article, we ad-

dress these questions by quantifying the extent to which the disclosure of mask metadata

and the release of multiple masked versions may affect confidentiality, with a view towards

providing guidance to custodians of health datasets. The masks considered include pertur-

bation, areal aggregation, and their combination. Confidentiality is measured by the areas of

confidence regions for individuals’ locations, which are derived under the probability models

governing the masks, conditioned on the disclosed mask metadata.

Key words: Disclosure risk, Locational error, Perturbation, Privacy, Spatial aggregation,

Spatial masking.



Introduction

Access to data on the geographic distribution of health conditions is important to public

health officials, academic researchers, and the general public. Public health officials need

spatially linked health information in order to direct prevention and control activities to areas

of need; researchers require access in order to conduct spatial analyses addressing important

scientific and public policy questions, many of which may not have been envisioned when the

data were originally collected; and ordinary citizens naturally want access to information that

is relevant to their own individual health status (e.g. the locations of unusually high rates

of cancer and other diseases). However, particularly since the 1996 enactment of HIPAA

regulations in the United States, the legal requirements of maintaining the confidentiality of

health information have led to heightened concern about disclosure of individual-level health

information and an increased interest in developing strategies that permit access. This is

particularly so for health data that include the geographic coordinates of affected individuals

since the ability of inverse address matching technology to reveal the street address of a

domicile at a point location and the names of its residents makes disclosure of individual

identities straightforward. Thus, it is widely recognized, within government agencies and

other custodians of health data as well as within the research community, that methods are

needed for providing access to data with sufficient detail to understand and evaluate the

spatial distribution of health conditions, while at the same time sufficiently preserving the

anonymity of individuals.

An increasingly important strategy for permitting access to sensitive data while protecting

individual identities is to “mask” the data before releasing it to legitimate users. Masking

includes but is not limited to the removal or encryption of obvious identifiers such as names,

residential addresses, and social security numbers; it may also involve relatively more sophis-

ticated statistical disclosure limitation procedures such as sampling, adding simulated data,

grouping, and swapping (Duncan and Pearson, 1991). For spatial data, effective masking

requires the modification of geographic coordinates linked to each individual so that inverse
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address matching can be circumvented. Two important spatial or geographic masks are ran-

dom perturbation (“jittering”) and areal aggregation; see for example, Armstrong, Rushton,

and Zimmerman (1999), French and Wand (2004), Kwan, Casas, and Schmitz (2004), Leitner

and Curtis (2004), and Fefferman, O’Neil, and Naumova (2005). The goal of geographically

masking a geocoded health dataset is to reduce the potential for identification of affected

individuals to acceptably low levels, while at the same time retaining sufficient geographic

detail to permit accurate spatial analyses of the data.

Although geographic masking has the potential to strike a satisfactory compromise be-

tween the imperatives of confidentiality and geographic detail, two important aspects of the

overall problem have heretofore received scant attention. We consider these in the context

of a typical situation in which an organization or agency serves as the custodian of a dataset

of health care information. As data custodian, it is responsible for maintaining information

on occurrences of a specified health condition with temporal and spatial markers, including

residential addresses that have been geocoded to geographic coordinates, and for making the

data available to appropriate outside users. Upon receiving a request for a dataset from a

legitimate user, the custodian will release a geographically masked version of it. But should

the custodian also reveal specific information about the geographic masking procedure, i.e.

mask metadata, to the user? The disclosure of mask metadata would aid researchers by

allowing them, in principle, to determine how definitive the conclusions of their spatial anal-

ysis are, or (via power calculations) whether conducting such an analysis is even worthwhile.

However, it may also assist a “hacker” whose goal is to identify individuals in the dataset.

For example, disclosing that the locations of disease cases have been randomly perturbed,

with perturbations sampled randomly from a uniform distribution within a circle of specified

radius, may assist a legitimate data user to determine whether any apparent clusters of cases

are statistically significant (at, say, the 0.05 level). But it may also help a hacker to breach

confidentiality by eliminating from consideration as possible cases a substantial proportion

of the background population (specifically, those individuals who do not reside in any of the
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circles centered on masked locations). Thus the custodian must carefully consider the type

and specificity of information disclosed in mask metadata and its effects on confidentiality.

A second question the data custodian may face is whether to release multiple distinct

masked versions of the data. This question arises naturally because the type and extent

of geographic masking applied to the data affects the kinds of spatial analyses that may

be performed and because different kinds of analyses, corresponding to a range of research

goals, may be desired by legitimate users over time. However, a potential consequence of

multiple releases is that when combined, they may appreciably enhance a hacker’s ability

to identify individuals. Therefore, it is essential that the data custodian consider the effects

that the release of multiple masked versions may have on confidentiality.

The purpose of this article is to quantify the extent to which confidentiality can be

affected by the disclosure of mask metadata and by multiple masked releases, in the hope

that such a quantification may provide useful guidance to data custodians. To this end, a

quantitative measure of confidentiality or its complement, disclosure risk, must be devised.

Many such measures have been devised for general data confidentiality settings; see, for

example, Duncan and Lambert (1989). Some measures adapted to geographic masking in

particular are proposed by Armstrong, Rushton, and Zimmerman (1999), Ohno-Machado,

Silveira, and Vinterbo (2004), and VanWey, Rindfuss, Gutmann, Entwisle, and Balk (2005).

Here, we focus on a quantity that purports to measure the risk of what Duncan and Lambert

(1989) call identity disclosure, i.e. the ease with which a record in the masked data can be

linked to a specific person (henceforth called a “case”). This quantity is the area of a

confidence region (of specified coverage probability) for the true location of a case, which

is derived under the probability model governing the mask(s), conditioned on the disclosed

mask metadata. Because a larger confidence region corresponds to lesser knowledge about

the true case location, the larger this measure’s value the greater the level of confidentiality

(and the smaller the disclosure risk). To a hacker, the practical implications of a larger

confidence region are that greater time, effort, and expense would be required to identify an
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individual.

To simplify interpretation, our framework for masking and measuring confidentiality is

initially area-based rather than population-based; that is, it does not account for variation

in the population density within subregions of the study region (or equivalently, it assumes

that the density is constant over the study region). However, adapting both the masking

protocols and the quantification of confidentiality to a situation with a spatially-varying

population density is straightforward, as we will demonstrate.

The remainder of the paper is organized as follows. The next section quantifies confiden-

tiality for some situations in which perturbation masks are employed in all releases, but with

different levels of specificity in the disclosed mask metadata. The two sections after that

describe modifications that allow for a spatially-varying population density and for different

perturbation dispersion parameters across releases. The penultimate section quantifies con-

fidentiality for situations in which one or more of the masks are areal aggregation masks.

Major conclusions are discussed in the final section.

Multiple Perturbation Masks

Assume that the data custodian possesses a list of the addresses of k cases or generic

health events and plans to release n perturbed versions of these case locations, where n ≥ 1.

Denote the true (x, y) coordinates of these locations by µ1, µ2, . . . , µk. Suppose that each

case is masked by adding to the true location’s coordinates a perturbation obtained by ran-

domly sampling from a common probability distribution and that this sampling is performed

independently across cases. While many choices exist for this probability distribution, we

consider the two that are likely to be used most often in practice: a bivariate normal distribu-

tion with equal means 0, equal variances σ2, and correlation zero; and a uniform distribution

on a circular region of radius r centered at 0. We write these two distributions as N(0, σ2I)

and U[C(0, r)], respectively; here and throughout, we use C(a, r) to represent a circle of

radius r centered at a point a. We refer to the former distribution as a circular normal
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distribution, and to the latter as a circular uniform distribution. Denote the perturbed lo-

cations by Zij = (xij, yij)
′

for i = 1, 2, . . . , k and j = 1, 2, . . . , n, and let Z denote this entire

set of locations.

Although the data custodian knows which case each perturbed location corresponds to,

this is not necessarily so for the data user. For this knowledge to be conveyed to the data user,

generic or encrypted labels identifying the case to which each perturbed location corresponds

must be assigned and disclosed with each masked release. Figure 1 illustrates this notion

for a simple example in which there are four cases and three masked releases. In the left

panel, the case labels for the perturbed locations are disclosed. In the right panel, however,

case labels are not disclosed, and attempts to group perturbed locations by case are prone to

error; note that simply grouping locations that are “closest together” in any reasonable sense

would mistakenly assign one group 2 location to group 3 and one group 3 location to group

2. Because disclosure of case labels affects confidentiality differently than non-disclosure, we

consider these two possibilities separately in what follows. Moreover, we assume that the

form of the perturbation distribution (circular normal or circular uniform) is disclosed to

data users, but that the dispersion parameter (σ2 or r) may or may not be disclosed.

Case Labels Disclosed

Normal distribution with σ2 disclosed

As our first scenario we suppose that perturbations are randomly sampled from a N(0, σ2I)

distribution, where case labels and the value of σ2 are disclosed to data users. Conveniently,

this is a standard grouped-data multivariate normal sampling situation, for which maximum

likelihood estimators (MLEs) and confidence regions for the µi’s are well-known. From the

point of view of a hacker, the likelihood function is

L(µ1, . . . , µk|Z, σ2) ∝ exp[−(1/2σ2)
k

∑

i=1

n
∑

j=1

(Zij − µi)
′

(Zij − µi)]. (1)

It follows easily that the MLE of µi is µ̂i = Zi = 1
n

∑n
j=1 Zij for i = 1, . . . , k. Moreover, Zi ∼
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N(µi,
σ2

n
I), by which we obtain the following 100(1 − α)% confidence region for µi:

{µi : (Zi − µi)
′

(Zi − µi) ≤ (σ2/n)χ2
2,α} (2)

where χ2
2,α is the 100(1 − α)th percentile of a chi-square distribution with two degrees of

freedom. Note that this confidence region is a circle of radius
√

(σ2/n)χ2
2,α centered at Zi;

thus, the area of the confidence region is

πσ2χ2
2,α/n. (3)

Expression (3) is useful in two ways. First, it indicates that the level of confidentiality, as

measured by the area of a confidence region of fixed confidence level, decreases at the rate

of 1/n as the number n of masked releases increases. Second, it can provide guidance to

the data custodian; if, for instance, a policy existed on the minimal allowable area of a 95%

confidence region for each µi, then expression (3) could be used to solve for the largest value

of n (for fixed σ2) or the smallest value of σ2 (for fixed n) that would keep the data custodian

in compliance with the policy.

Normal distribution with σ2 undisclosed

Now consider a setting similar to that of the previous subsection, but in which the value

of σ2 is not disclosed to data users. The hacker’s likelihood function here is similar to that

given by (1), but reflects the fact that σ2 is undisclosed and must therefore be regarded as

an unknown parameter to be estimated:

L(µ1, . . . , µk, σ
2|Z) ∝ (σ2)−nk exp[−(1/2σ2)

k
∑

i=1

n
∑

j=1

(Zij − µi)
′

(Zij − µi)].

Nevertheless, this is again equivalent to a standard (but slightly different) grouped-data

multivariate normal sampling situation, for which the MLEs of µi (i = 1, . . . , k) and σ2 and

the theory that leads to a confidence region for each µi are well-known. Note that there

must be at least two releases (n ≥ 2) for σ2 to be estimable and for confidence regions to
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exist. The MLEs of µi and σ2 are µ̂i = Zi and

σ̂2 =
1

2nk

k
∑

i=1

n
∑

j=1

(Zij − Zi)
′

(Zij − Zi),

respectively. Now we have that

n(Zi − µi)
′

(Zi − µi)/σ
2 ∼ χ2

2 and 2nkσ̂2/σ2 ∼ χ2
2k(n−1),

and that these two quantities are distributed independently. Thus, a 100(1−α)% confidence

region for µi is given by

{

µi : (Zi − µi)
′

(Zi − µi) ≤
2σ̂2

n − 1
F2,2k(n−1),α

}

(4)

where F2,2k(n−1),α is the 100(1 − α)th percentile of an F distribution with 2 and 2k(n − 1)

degrees of freedom. This region is a circle centered at Zi, with expected area

2π

n − 1
F2,2k(n−1),αE(σ̂2) =

2πσ2

n
F2,2k(n−1),α. (5)

Note that (5) is an expected area, as the area of (4) is a random variable. Also observe

that (5), like (3), is constant across cases and decreases at the rate of 1/n; furthermore, it is

somewhat larger than (3).

The ratio of (3) to (5), i.e. χ2
2,α/2F2,2k(n−1),α, can be interpreted as a measure of the

degradation in confidentiality due to disclosure of the perturbation variance σ2: the smaller

the ratio, the greater the degradation. Table 1 gives this ratio for selected values of k, n,

and α. These results show that the disclosure of σ2 affects confidentiality less as k and n

increase. This is not surprising in light of the fact that the masked data themselves provide

information about σ2, which can be used to construct an ever more precise estimate as k

and n increase.
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Circular uniform distribution with radius disclosed

Now suppose that perturbed locations are obtained by randomly sampling from a U[C(0, r)]

distribution, where case labels and the value of r are disclosed to data users. In this situation

the hacker’s likelihood function can be written as

L(µ1, . . . , µk|Z, r) =
k

∏

i=1

`(µi|Zi, r) (6)

where Zi denotes the set of perturbed locations corresponding to case i and

`(µi|Zi, r) =











(1/πr2)n, if (Zij − µi)
′

(Zij − µi) < r for all j = 1, . . . , n

0, otherwise.

Because the unknown parameters appear in only one term each in the product in (6), in-

ference for each true location can be treated separately from the others. In particular, to

obtain the MLE of µi it suffices to maximize each `(µi|Zi, r) separately. The MLE of µi

so obtained is not uniquely determined, but is given by any point in the intersection of the

circles C(Zij, r) across j, i.e.

µ̂i ∈ ∩n
j=1C(Zij, r). (7)

Now, for each j we have

(Zij − µi)
′

(Zij − µi)/r
2 ∼ U(0, 1),

and thus

max
j

[(Zij − µi)
′

(Zij − µi)/r
2] ∼ Beta(n, 1).

It follows that a 100(1 − α)% confidence region for µi is given by

{µi : max
j

[(Zij − µi)
′

(Zij − µi)/r
2] ≤ (1 − α)1/n},

or equivalently by

{µi : µi ∈ ∩n
j=1C(Zij, r(1 − α)1/2n}. (8)
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This is again an intersection (across j) of circles centered at the Zij’s, but the common radius

of these circles is smaller than that which defines a MLE. It is worth noting that if n ≥ 2:

(a) the shape and area of this confidence region vary with i; and (b) the confidence region is

likely to be the empty set, and hence of no use to a hacker, when 1− α is sufficiently small.

When n = 1, (8) is simply a circle of area

πr2(1 − α). (9)

When n = 2, (8) is the intersection of two circles with common radius, hence simple geometric

considerations yield its area as











r2(1 − α)1/2(qi − sin qi), if di ≤ 2r(1 − α)1/4

0, otherwise,
(10)

where qi = 2 cos−1{di/[2r(1 − α)1/4]} and di = [(Zi1 − Zi2)
′

(Zi1 − Zi2)]
1/2. This area is a

random variable with an analytically intractable expectation, so we estimate the expected

area by Monte Carlo simulation. Table 2 gives (9), the exact area when n = 1, and the ratio of

estimated expected area (10) when n = 2 to (9), for selected values of r and α. When n ≥ 3,

an explicit formula for the area of (8), or for its expectation, is intractable. Nevertheless,

for a fixed confidence level the effect that increasing n has on this area can be evaluated

computationally. Additional rows of Table 2 display the results of one such evaluation. A

single case was assumed to occur at (0,0), and n independent U[C(0, r)] perturbations of this

case were obtained for selected values of n and r. A very fine grid (1000×1000) was laid over

the study region and the number of grid points contained in (8) (with α taken to be 0.01 or

0.05) was counted. This process was repeated 1000 times for each combination of n, r and

α, and the average of these 1000 counts was taken as an estimate of the expected area of

(8) for that combination. The rows of Table 2 corresponding to n ≥ 3, like those for n = 2,

give the ratio of estimated expected area of (8) to πr2(1 − α). Table 2 as a whole reveals

that doubling r from 0.05 to 0.10 approximately quadruples the expected area and doubling
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n results in a 54-68% reduction in expected area (over the given range of n). Recalling that

in the circular normal case, doubling σ2 exactly quadruples the area of the confidence region

and doubling n exactly halves the area of the confidence region, we see that the effect of

multiple releases is similar, but perhaps slightly more detrimental to confidentiality, when

the perturbation distribution is circular uniform than when it is normal.

Circular uniform distribution with radius undisclosed

If r is not disclosed, the hacker’s likelihood function is slightly different from (6) and can

be written as

L(µ1, . . . , µk, r|Z) =
k

∏

i=1

`(µi, r|Zi) (11)

where

`(µi, r|Zi) =











(1/πr2)n, if (Zij − µi)
′

(Zij − µi) < r for all j = 1, . . . , n

0, otherwise.

Because the common radius r must be estimated in this situation, each case cannot be

treated separately. From (11) we see that obtaining the MLEs of µ1, . . . , µk and r amounts

to determining values µ̂1, . . . , µ̂k and r̂ such that the k circles centered at µ̂1, . . . , µ̂k with

common radius r̂ will each cover its corresponding group of perturbed locations, with r̂ as

small as possible. When k = 1 this is a classical problem in computational geometry known

as the “smallest enclosing circle problem.” There is no closed-form solution to this problem,

but several ingenious numerical algorithms have been devised; see, for example, Preparata

and Shamos (1988). In our situation k > 1, hence a few additional steps are required to

obtain the MLEs. First, the smallest enclosing circle must be obtained for each group (case)

separately. Let m denote the index corresponding to the group whose smallest enclosing

circle has the largest radius among groups, and let rm denote this radius. Then, r̂ = rm, and

the MLE of µm is the unique point at the center of the circle that encloses group m. The

MLE of each remaining µi is given by any point in the intersection of the circles C(Zij, r̂)

across j, i.e., µ̂i ∈ ∩n
j=1C(Zij, r̂).
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Recall that in the context of a circular uniform distribution with known radius, we were

able to derive a closed-form expression, namely (8), for a 100(1− α)% confidence region for

each µi. For the present situation in which r is unknown, however, derivation of a confidence

region is intractable. Nevertheless, the form of (8) suggests that a hacker might consider

using

{µi : µi ∈ ∩n
j=1C(Zij, r̂(1 − α)1/2n} (12)

as an ad hoc “search region” (of unknown coverage probability) for µi. Observe that this

region is identical to (8) except that r̂ appears in place of r. Monte Carlo simulation can be

used to study how the area and coverage probability of (12) compare to those of (8), and

thus how the non-disclosure of r affects confidentiality. In particular, the area of (12) can

be estimated with little difficulty when n = 2; for a given combination of k and r we simply

need to obtain (12) for many simulated datasets drawn from the distribution specified by

(11), use (10) to compute the area of each, and then average these areas over simulations.

The coverage probability of (12) can be estimated by the proportion of simulation×case

combinations for which (12) contains the true µi.

Results for the area of the largest (across cases) search region so obtained and its estimated

coverage probability are given in Table 3. Observe, for example, that the area of the 99%

confidence region for an arbitrary case when r is known and the expected area of the largest

nominal 99% search region when k = 10 are about equal, but that the coverage probability

of the latter is only about 57%. This, together with the other results of Table 3, clearly

demonstrate that the non-disclosure of r has a positive effect on confidentiality. Therefore,

the data custodian should be loathe to disclose it, at least when n and k are small.

Case Labels Undisclosed

In the situations considered so far, it has been assumed that the data custodian attaches

generic case labels to the perturbed locations, so that data users can correctly group to-

gether, across releases, all locations corresponding to the same case. When this is not so,
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computation of the MLE is much less straightforward, for generally one must then maxi-

mize the likelihood over all possible groupings. The number of ways to assign the perturbed

locations to k groups of size n is (k!)n−1, which grows very quickly as n increases. For sim-

plicity, therefore, we consider the case n = 2 only. In this case the locations from each of

the two masked releases can be assigned labels from {1, . . . , k}, but there is no guarantee

that the second labeling correctly pairs locations corresponding to the same true case. Let

π = (π1, . . . , πk)
′

denote the k×1 vector of true case labels for the second release (in terms of

the labeling used for the first release), which is merely a permutation of the integers 1, . . . , k.

Now, from the perspective of a hacker, π is an unknown parameter taking on one of k!

possible values, which must be estimated together with µ1, . . . , µk and any other unknown

model parameters. This lack of knowledge of π affects the hacker’s inference for µ1, . . . , µk.

For the circular normal setting with σ2 disclosed, the hacker’s likelihood function is

L(π, µ1, . . . , µk|Z, σ2) ∝ exp{−(1/2σ2)
k

∑

i=1

[(Zi1 − µi)
′

(Zi1 − µi) + (Zπi2 − µi)
′

(Zπi2 − µi)]}.

(13)

Let Ziπ = 1
2
(Zi1 + Zπi2). Careful analysis of (13) reveals that the MLE of π is given by the

assignment scheme that minimizes the within-group variation, i.e.,

π̂ = argmin
k

∑

i=1

[(Zi1 − Ziπ)
′

(Zi1 − Ziπ) + (Zπi2 − Ziπ)
′

(Zπi2 − Ziπ)],

and the MLE of µi is then µ̂i = Ziπ̂. Derivation of a 100(1 − α)% confidence region for µi

appears to be intractable, but by analogy with (2) it would be natural for a data user to use

{µi : (Ziπ̂ − µi)
′

(Ziπ̂ − µi) ≤ (σ2/2)χ2
2,α} (14)

as an ad hoc search region (of unknown coverage probability) for µi.

Table 4 gives empirical coverage probabilities (obtained via Monte Carlo simulation) for

(14) corresponding to the situation depicted in Figure 2, in which there are k = 5 cases

distributed within a square of side 2.0. Three values of σ were considered. For σ = 0.05,
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not one of the 10,000 simulations yielded a misclassification of cases to groups, and the

empirical coverage probabilities were completely consistent with nominal levels. For σ =

0.20, however, approximately 23% of the simulations resulted in misclassifications, all of

which involved cases 4 and 5 only. The coverage probabilities corresponding to cases 4 and

5 are slightly reduced, to less than 0.97 for the nominal 99% region and to less than 0.90

for the nominal 95% region. For σ = 1.00, approximately 83% of the simulations resulted

in misclassifications, and this time only 16% of them involved interchanges of cases 4 and 5.

The actual coverage probabilities of the nominal 99% and 95% search regions were roughly

0.93 and 0.84, regardless of case. Qualitatively similar results were obtained for other choices

of k and other spatial configurations of case locations. Thus, it appears that the effect of

not disclosing the case labels is to modestly reduce the actual coverage probability of region

(14), with the magnitude of the reduction depending on the magnitude of σ relative to the

distance between cases.

For the remaining situations we considered in the previous section, similar modifications

to account for undisclosed case labels can be made to inference procedures for µ1, . . . , µk. For

the circular normal setting with undisclosed σ2, the MLEs of π and µ1, . . . , µk are identical

to those just described, and the MLE of σ2 is given by

σ̂2 = (1/4k)
k

∑

i=1

[(Zi1 − Ziπ̂)
′

(Zi1 − Ziπ̂) + (Zπ̂i2
− Ziπ̂)

′

(Zπ̂i2
− Ziπ̂)].

In the circular uniform setting with r disclosed, all points belonging to nonempty sets of

form (7) for some grouping scheme will contribute the same term to the likelihood, namely

(1/πr2)2, so any permutation of {1, . . . , k} yielding k such sets will be an MLE of π, and

any points within such sets will be MLEs of their respective µi. When r is not disclosed, the

MLE of π is the permutation that results in the smallest value of r̂ obtained by the procedure

described previously, and µ̂1, . . . , µ̂k may also be obtained as described there. Consequently,

a hacker might attempt to construct search regions analogous to (14) in such situations.
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Accounting for Population Density

Our framework for masking and measuring confidentiality has not, to this point, incor-

porated any aspect of variation in population density into the perturbation distribution or

the confidence region’s construction. As a consequence, in the circular normal situation for

example, the areas of confidence regions for case locations were constant across cases. It

is rather simple, however, to account for population density in the perturbation model and

thereby obtain confidence or search regions whose areas may vary across cases. A data cus-

todian might view accounting for population density as desirable for various purposes. In

particular, it would offer a means of equalizing disclosure risk across all cases, which would be

useful if a hacker, given sufficient information to construct confidence regions for two cases,

requires less effort to breach confidentiality in the region that has the smaller population.

The key to equalizing disclosure risk across cases is to use a different dispersion parameter

for each case’s perturbation distribution, specifically one which is inversely related to the

population size in the vicinity of the case’s true location. This could be implemented in

the circular uniform situation by choosing the case-specific dispersion parameters {ri : i =

1, . . . , k} to be such that the same number of individuals in the background population reside

in each C(µi, ri). In the circular normal situation, case-specific variances {σ2
i : i = 1, . . . , k}

might be chosen in such a way that a given, say 95%, probability contour centered at the

true location contains the same number of individuals from the background population.

Whatever scheme the data custodian uses to choose the dispersion parameters, expressions

for MLEs, confidence regions, and areas of confidence regions that might be computed by

a data hacker are relatively straightforward generalizations of expressions we have given

previously. For simplicity, suppose that case labels are disclosed. Then, in the circular

normal case with variances disclosed, the 100(1 − α)% confidence region for µi and its area

are given by expressions identical to (2) and (3), except that σ2
i replaces σ2. Likewise, in the

circular uniform case with r disclosed, the 100(1−α)% confidence region for µi and its area

when n = 1 and n = 2 are given by expressions identical to (8), (9), and (10), except that
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ri is substituted for r. Now, if the dispersion parameters are not disclosed, then (provided

n ≥ 2) the 100(1− α)% confidence region for µi and its area in the circular normal case are

given by expressions identical to (4) and (5), except that

σ̂2
i =

1

2n

n
∑

j=1

(Zij − Zi)
′

(Zij − Zi)

is substituted for σ̂2, and the second degree of freedom parameter in the F percentile changes

from 2k(n − 1) to 2(n − 1). As for the circular uniform case, no explicit confidence region

is available, but one might expect that a hacker would use a search region akin to (12) with

r̂i substituted for r̂, where r̂i is obtained by solving the smallest enclosing circle problem

separately for case i.

For a masking protocol that directly accounts for population density, a data custodian

should measure the effects of multiple releases and non-disclosure of dispersion parameters

on confidentiality by the population size (or its expectation), rather than the area (or its

expectation), of each confidence or search region.

Varying the Dispersion Parameter Across Releases

Occasionally, a data custodian may wish to vary the dispersion parameter of the per-

turbation distribution across releases. This could happen, for instance, if there was public

concern about the possibility of cancer clusters in a certain region, but the custodian had

initially released the data using a dispersion parameter so large that researchers had little

statistical power to detect any clusters. A second release using a smaller dispersion param-

eter would confer greater power upon most tests for clusters, and could thus yield more

definitive conclusions.

Suppose, then, that the perturbation dispersion parameters of the circular normal and

circular uniform distributions are permitted to vary across releases. Suppose further that

case labels are disclosed. Then, in the circular normal situation in which release-specific
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variances {σ2
(j) : j = 1, . . . , n} are disclosed, the MLE of µi is

µ̂i =





n
∑

j=1

1

σ2
(j)





−1
n

∑

j=1

1

σ2
(j)

Zij,

and a 100(1 − α)% confidence region for µi is given by

{µi : (µ̂i − µi)
′

(µ̂i − µi) ≤





n
∑

j=1

1

σ2
(j)





−1

χ2
2,α}. (15)

For the corresponding circular uniform situation in which release-specific radii {r(j) : j =

1, . . . , n} are disclosed, a MLE and 100(1−α)% confidence region for µi are given by expres-

sions identical to (7) and (8) except that r(j) replaces r. Thus, both of these are intersections

of circles of varying, rather than common, sizes.

If the dispersion parameters are release-specific but not disclosed, the derivation of MLEs

and confidence regions is considerably more complicated. We will report results elsewhere

for these situations, as well as for situations in which the dispersion parameters are simulta-

neously release-specific and case-specific (e.g., to account for population density).

In general, the effect of reducing the perturbation dispersion parameter for one or more

releases is to reduce the area of the confidence region for µi below what it would be if all

releases used the largest dispersion. For example, in the particular case of two releases and a

circular normal perturbation distribution, if the variance of the second release is 1/ν as large

as that of the first release, then the confidence region given by (15) has area 1/(ν + 1) as

large as the area of the confidence region obtained using only the data from the first release.

Combining Perturbation with Aggregation

Often, data custodians choose to release an areal aggregation of data, such as a map or

table displaying cases or case counts by census tract or county. We now consider situations

in which the data custodian combines this type of aggregated data release together with

releases using perturbations of point locations.
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If all of the data releases are aggregation masks, the effects of multiple releases are trans-

parent and depend on whether the aggregations are spatially nested or crossed (spatially

misaligned). In the nested case, e.g. aggregations to U.S. census block groups and tracts,

the impact of masking on confidentiality is determined entirely by how small the population

sizes are for the areal units used in the smallest-scale aggregation mask. In the crossed case,

e.g. aggregations to census tracts and zip codes, population sizes in the areas of intersection

across masked releases determine the extent to which confidentiality is affected.

If a single aggregation mask is combined with one or more perturbation masks, it is clear

that the confidentiality of only those cases near the boundary of each areal unit will be

affected significantly. Moreoever, the aggregation mask will have relatively little effect on

confidentiality if the scale of perturbation is small relative to the dimensions of the areal

units. To illustrate this numerically, consider a study area comprising a rectangular array of

square areal units, each of side a, and suppose that the background population, as well as

the subpopulation of cases, is distributed independently and uniformly over this study area.

Suppose further that two masked versions are released: one which perturbs case locations

independently according to a uniform distribution on a square of side 2r (with r ≤ a/2)

centered at their respective actual locations, and another which aggregates case locations

to their respective areal units. For simplicity, we assume that r and the case labels are

disclosed, and we consider only those cases whose actual locations lie in an arbitrary interior

areal unit S; observe that after perturbation such cases must lie in another square, say T ,

of side a + 2r containing S (see Figure 3).

Now let µ = (u, v) be the true coordinates of an arbitrary case in S, let z = (x, y) be

the corresponding perturbed location, and let B(z, r) be a square of side 2r centered at z.

From the hacker’s perspective, the region which must contain µ, given only the information

available from the two masked datasets (namely, that µ ∈ S and that its corresponding

perturbed location is z), is the rectangle B(z, r)∩S. Let A(z, r) be the area of this rectangle.

Note that 0 < A(z, r) ≤ 4r2; furthermore, A(z, r) is close to zero if and only if z is close
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to the boundary of T , and the upper bound 4r2 is attained if and only if z is in S and is

no closer than r to the boundary of S. Define γ ≡ E{A(z, r)}/(4r2), where the expectation

is taken over the distribution of z. We have that 0 < γ < 1, and the closer that γ is to 0

the greater the effect of the aggregation mask on confidentiality relative to the perturbation

mask.

To obtain an expression for γ in terms of a and r, let g(µ) and f(z) denote the probability

density functions of µ and z, respectively, and let h(z|µ) denote the conditional density of

z given µ. Then f(z) is given by

f(z) = f(x, y) =
∫

B(z,r)∩S
g(u, v)h(x, y|u, v) du dv

=
∫

B(z,r)∩S

1

a2
·

1

4r2
du dv

=
1

4a2r2
A(z, r), for z ∈ T .

Thus, γ = a−2
∫

T A2(z, r) dz. Now, by partitioning T into suitable subregions and exploiting

various symmetries, we find, after tedious but straightforward calculations, that γ = (3a −

2r)2/(9a2). Thus, as expected, γ tends to 1 as a gets large relative to r. Values of γ for

selected values of a/r are as follows:

a/r 2 3 4 6 10 20 50

γ 0.444 0.605 0.694 0.790 0.871 0.934 0.974

These results show that if both masked versions of the data are released and if, for example,

a/r = 6, then the average effort (across cases) a data hacker would have to expend to identify

an individual case is 79% of what it would be if only the perturbed data were released. For a

case whose masked location is close to a boundary, the required effort could be significantly

less.

Conclusions

In this article, we have examined, through a combination of statistical theory and simu-

lation, how confidentiality is affected by the disclosure of mask metadata and the release of
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multiple masked versions. To illustrate our approach, we considered situations in which a

data custodian perturbs generically labeled point locations using normal bivariate and circu-

lar uniform spatial masks, then either conceals or discloses information about the dispersion

parameters of the mask(s). We used our results for situations without mask metadata disclo-

sure to generate ratios for examining the reduction in confidentiality that occurs when mask

metadata are revealed. As anticipated, disclosing mask metadata decreased the area (or ex-

pected area) of confidence regions of fixed coverage probability, and increased the coverage

probability of confidence regions of fixed area, with the strongest effects observed for lower

numbers of releases and smaller numbers of cases. These effects are intuitively reasonable:

given a specific number of cases, increasing the number of releases means that the releases

themselves, bereft of mask metadata, will provide additional information on the mask pa-

rameter; also, given a specific number of masked data releases, higher numbers of cases

also provides additional information about mask parameters. Thus for both higher numbers

of masked data releases and higher case counts, the impact of revealing mask metadata is

lower. We also considered the relative impact of disclosure versus non-disclosure of case la-

bels, illustrating the results of a specific situation with five cases and two data releases. Our

results in this and other instances indicate that not disclosing case labels modestly reduces

the coverage probability of a confidence region, with the impact of the reduction related to

the relative sizes of the mask’s dispersion parameter(s) and the distances between individual

cases.

In addition to multiple perturbation masks, we considered the combination of a release

of a spatially aggregated dataset and one or more perturbed releases of point data. This

combination is quite likely to occur in practice, given the tendency for data custodians to

release datasets aggregated to recognizable regions, such as counties or states, for public

information, while also releasing one or more masked point datasets for analytical use by

researchers. In such cases, a key consideration for the masked datasets is the relative size

of the perturbations in relation to the areal units used for aggregation. Particularly when
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the areal units are not much larger than the uniform region(s) used for perturbation, the

information revealed may shrink a hacker’s search regions significantly, thus dramatically

compromising confidentiality, especially for those cases located near the boundaries of the

areal units.

Although we obtained numerical results for several specific masking scenarios and de-

scribed how our methodology could be modified to obtain results for other scenarios (namely

those that involve release-specific dispersion parameters or account for variation in popula-

tion density), it is still true that many practical masking scenarios facing data custodians

will not match any of the ones we have illustrated in all details. Therefore, we anticipate that

data custodians will need to further modify our methodology to fit their particular scenarios.
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Table 1: The effect on confidentiality of disclosing the variance of normal perturbations; the

smaller the table entry, the greater the effect. Each entry in the table is the ratio of the

area of confidence region (2) to the expected area of confidence region (4) corresponding to

a particular combination of k, n, and α.

k n α = 0.05 α = 0.01

10 2 0.857 0.787

3 0.927 0.889

4 0.951 0.926

20 2 0.927 0.889

3 0.963 0.944

4 0.976 0.962

30 2 0.951 0.926

3 0.976 0.962

4 0.984 0.975
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Table 2: Area of (8) when n = 1, and estimates of the ratio of expected area of (8) when

n ≥ 2 to the area of (8) when n = 1, for different combinations of n, r, and α. Standard errors

of estimates are given in parentheses. Results for n = 2 are based on 300,000 simulations,

and results for n ≥ 3 are based on 1000 simulations using 106 grid points.

n r α = 0.01 α = 0.05

1 0.05 7.775 × 10−3 7.461 × 10−3

0.10 3.110 × 10−2 2.985 × 10−2

2 0.05 0.461 (0.000) 0.465 (0.000)

0.10 0.461 (0.000) 0.466 (0.000)

3 0.05 0.263 (0.005) 0.272 (0.006)

0.10 0.275 (0.006) 0.269 (0.006)

4 0.05 0.170 (0.004) 0.175 (0.004)

0.10 0.175 (0.004) 0.176 (0.004)

6 0.05 0.092 (0.002) 0.095 (0.003)

0.10 0.094 (0.002) 0.093 (0.003)

8 0.05 0.055 (0.002) 0.057 (0.002)

0.10 0.055 (0.001) 0.056 (0.002)
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Table 3: Estimates of the ratio of the expected maximum area of (12) across cases to the

expected area of (8) for an arbitrary case, and the coverage probability of (12) for the

maximum-area case, for different combinations of k, r, and α, when n = 2. Standard errors

are reported in parentheses. Results are based on 10,000 simulations.

Area Ratio Coverage probability

k r α = 0.01 α = 0.05 α = 0.01 α = 0.05

10 0.05 1.030 (0.003) 1.034 (0.003) 0.572 (0.005) 0.559 (0.005)

0.10 1.025 (0.003) 1.029 (0.003) 0.578 (0.005) 0.554 (0.005)

20 0.05 1.293 (0.003) 1.302 (0.003) 0.684 (0.005) 0.657 (0.005)

0.10 1.290 (0.003) 1.302 (0.003) 0.675 (0.005) 0.654 (0.005)

30 0.05 1.421 (0.002) 1.440 (0.002) 0.721 (0.005) 0.712 (0.005)

0.10 1.422 (0.002) 1.439 (0.002) 0.728 (0.004) 0.707 (0.005)
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Table 4: Estimates of the coverage probability of (14), for different combinations of σ and

α. Standard errors are reported in parentheses. Results are based on 10,000 simulations.

σ Case α = 0.01 α = 0.05

0.05 1 0.990 (0.0010) 0.949 (0.0022)

2 0.991 (0.0009) 0.952 (0.0021)

3 0.990 (0.0010) 0.951 (0.0022)

4 0.991 (0.0009) 0.955 (0.0021)

5 0.988 (0.0011) 0.952 (0.0021)

0.20 1 0.990 (0.0010) 0.949 (0.0022)

2 0.989 (0.0010) 0.949 (0.0022)

3 0.990 (0.0010) 0.950 (0.0022)

4 0.965 (0.0018) 0.896 (0.0030)

5 0.968 (0.0018) 0.898 (0.0030)

1.00 1 0.926 (0.0026) 0.840 (0.0037)

2 0.937 (0.0024) 0.849 (0.0036)

3 0.928 (0.0026) 0.832 (0.0037)

4 0.928 (0.0026) 0.834 (0.0037)

5 0.934 (0.0025) 0.853 (0.0035)
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Figure Captions

Figure 1. Depiction of disclosed (left panel) and undisclosed (right panel) case labels for an

example in which there are four cases (labeled as 1, 2, 3, 4) and three masked releases.

Figure 2. Depiction of true locations (upper left plot) and typical realizations (remain-

ing plots) when σ = 0.05, 0.20, and 1.00 for the example having undisclosed case labels

described in the text. True locations are at points (1,−1), (−1,−1), (−1, 1), (1, 1), and

(1.25, 1.25).

Figure 3. Scenario combining aggregation with perturbation. The outer region is denoted by

T , and the square of side a contained in T is denoted by S. The point in the upper portion

of S represents a perturbed case location z = (x, y). The square of side 2r centered on z

is denoted by B(z, r), and the cross-hatched portion of this square, B(z, r) ∩ S, has area

denoted by A(z, r). See text for further details.
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